Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(2): e0211123, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38289138

RESUMO

Despite the significant presence of plant-derived tricarboxylic acids in some environments, few studies detail the bacterial metabolism of trans-aconitic acid (Taa) and tricarballylic acid (Tcb). In a soil bacterium, Acinetobacter baylyi ADP1, we discovered interrelated pathways for the consumption of Taa and Tcb. An intricate regulatory scheme tightly controls the transport and catabolism of both compounds and may reflect that they can be toxic inhibitors of the tricarboxylic acid cycle. The genes encoding two similar LysR-type transcriptional regulators, TcuR and TclR, were clustered on the chromosome with tcuA and tcuB, genes required for Tcb consumption. The genetic organization differed from that in Salmonella enterica serovar Typhimurium, in which tcuA and tcuB form an operon with a transporter gene, tcuC. In A. baylyi, tcuC was not cotranscribed with tcuAB. Rather, tcuC was cotranscribed with a gene, designated pacI, encoding an isomerase needed for Taa consumption. TcuC appears to transport Tcb and cis-aconitic acid (Caa), the presumed product of PacI-mediated periplasmic isomerization of Taa. Two operons, tcuC-pacI and tcuAB, were transcriptionally controlled by both TcuR and TclR, which have overlapping functions. We investigated the roles of the two regulators in activating transcription of both operons in response to multiple effector compounds, including Taa, Tcb, and Caa.IMPORTANCEIngestion of Taa and Tcb by grazing livestock can cause a serious metabolic disorder called grass tetany. The disorder, which results from Tcb absorption by ruminants, focuses attention on the metabolism of tricarboxylic acids. Additional interest stems from efforts to produce tricarboxylic acids as commodity chemicals. Improved understanding of bacterial enzymes and pathways for tricarboxylic acid metabolism may contribute to new biomanufacturing strategies.


Assuntos
Acinetobacter , Ácido Aconítico , Ácido Aconítico/metabolismo , Ácidos Tricarboxílicos/química , Ácidos Tricarboxílicos/metabolismo , Acinetobacter/genética , Acinetobacter/metabolismo , Salmonella typhimurium/genética , Proteínas de Bactérias/metabolismo
2.
J Bacteriol ; 205(2): e0033822, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36655997

RESUMO

Escherichia coli is the most studied and well understood microorganism, but research in this system can still be limited by available genetic tools, including the ability to rapidly integrate multiple DNA constructs efficiently into the chromosome. Site-specific, large serine-recombinases can be useful tools, catalyzing a single, unidirectional recombination event between 2 specific DNA sequences, attB and attP, without requiring host proteins for functionality. Using these recombinases, we have developed a system to integrate up to 12 genetic constructs sequentially and stably into in the E. coli chromosome. A cassette of attB sites was inserted into the chromosome and the corresponding recombinases were cloned onto temperature sensitive plasmids to mediate recombination between a non-replicating, attP-containing "cargo" plasmid and the corresponding attB site on the chromosome. The efficiency of DNA insertion into the E. coli chromosome was approximately 107 CFU/µg DNA for six of the recombinases when the competent cells already contained the recombinase-expressing plasmid and approximately 105 CFU/µg DNA or higher when the recombinase-expressing plasmid and "cargo" plasmid were co-transformed. The "cargo" plasmid contains ΦC31 recombination sites flanking the antibiotic gene, allowing for resistance markers to be removed and reused following transient expression of the ΦC31 recombinase. As an example of the utility of this system, eight DNA methyltransferases from Clostridium clariflavum 4-2a were inserted into the E. coli chromosome to methylate plasmid DNA for evasion of the C. clariflavum restriction systems, enabling the first demonstration of transformation of this cellulose-degrading species. IMPORTANCE More rapid genetic tools can help accelerate strain engineering, even in advanced hosts like Escherichia coli. Here, we adapt a suite of site-specific recombinases to enable simple, rapid, and highly efficient site-specific integration of heterologous DNA into the chromosome. This utility of this system was demonstrated by sequential insertion of eight DNA methyltransferases into the E. coli chromosome, allowing plasmid DNA to be protected from restriction in Clostridium clariflavum and enabling genetic transformation of this organism. This integration system should also be highly portable into non-model organisms.


Assuntos
Bacteriófagos , Integrases , Integrases/genética , Escherichia coli/genética , Bacteriófagos/genética , Recombinação Genética , Plasmídeos , Recombinases/genética , DNA , Cromossomos/metabolismo , Metiltransferases/genética , Sítios de Ligação Microbiológicos
3.
Appl Environ Microbiol ; 88(15): e0088322, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35862682

RESUMO

The regulated uptake and consumption of d-amino acids by bacteria remain largely unexplored, despite the physiological importance of these compounds. Unlike other characterized bacteria, such as Escherichia coli, which utilizes only l-Asp, Acinetobacter baylyi ADP1 can consume both d-Asp and l-Asp as the sole carbon or nitrogen source. As described here, two LysR-type transcriptional regulators (LTTRs), DarR and AalR, control d- and l-Asp metabolism in strain ADP1. Heterologous expression of A. baylyi proteins enabled E. coli to use d-Asp as the carbon source when either of two transporters (AspT or AspY) and a racemase (RacD) were coexpressed. A third transporter, designated AspS, was also discovered to transport Asp in ADP1. DarR and/or AalR controlled the transcription of aspT, aspY, racD, and aspA (which encodes aspartate ammonia lyase). Conserved residues in the N-terminal DNA-binding domains of both regulators likely enable them to recognize the same DNA consensus sequence (ATGC-N7-GCAT) in several operator-promoter regions. In strains lacking AalR, suppressor mutations revealed a role for the ClpAP protease in Asp metabolism. In the absence of the ClpA component of this protease, DarR can compensate for the loss of AalR. ADP1 consumed l- and d-Asn and l-Glu, but not d-Glu, as the sole carbon or nitrogen source using interrelated pathways. IMPORTANCE A regulatory scheme was revealed in which AalR responds to l-Asp and DarR responds to d-Asp, a molecule with critical signaling functions in many organisms. The RacD-mediated interconversion of these isomers causes overlap in transcriptional control in A. baylyi. Our studies improve understanding of transport and regulation and lay the foundation for determining how regulators distinguish l- and d-enantiomers. These studies are relevant for biotechnology applications, and they highlight the importance of d-amino acids as natural bacterial growth substrates.


Assuntos
Acinetobacter , Regulação Bacteriana da Expressão Gênica , Acinetobacter/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Ácido D-Aspártico/genética , Ácido D-Aspártico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Nitrogênio/metabolismo , Peptídeo Hidrolases/metabolismo
4.
Genes (Basel) ; 10(6)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159259

RESUMO

The simultaneous response of one transcriptional regulator to different effectors remains largely unexplored. Nevertheless, such interactions can substantially impact gene expression by rapidly integrating cellular signals and by expanding the range of transcriptional responses. In this study, similarities between paralogs were exploited to engineer novel responses in CatM, a regulator that controls benzoate degradation in Acinetobacter baylyi ADP1. One goal was to improve understanding of how its paralog, BenM, activates transcription in response to two compounds (cis,cis-muconate and benzoate) at levels significantly greater than with either alone. Despite the overlapping functions of BenM and CatM, which regulate many of the same ben and cat genes, CatM normally responds only to cis,cis-muconate. Using domain swapping and site-directed amino acid replacements, CatM variants were generated and assessed for the ability to activate transcription. To create a variant that responds synergistically to both effectors required alteration of both the effector-binding region and the DNA-binding domain. These studies help define the interconnected roles of protein domains and extend understanding of LysR-type proteins, the largest family of transcriptional regulators in bacteria. Additionally, renewed interest in the modular functionality of transcription factors stems from their potential use as biosensors.


Assuntos
Acinetobacter/genética , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Elementos Reguladores de Transcrição/genética
5.
Proc Natl Acad Sci U S A ; 115(27): 7105-7110, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915086

RESUMO

Experimental evolution is a critical tool in many disciplines, including metabolic engineering and synthetic biology. However, current methods rely on the chance occurrence of a key step that can dramatically accelerate evolution in natural systems, namely increased gene dosage. Our studies sought to induce the targeted amplification of chromosomal segments to facilitate rapid evolution. Since increased gene dosage confers novel phenotypes and genetic redundancy, we developed a method, Evolution by Amplification and Synthetic Biology (EASy), to create tandem arrays of chromosomal regions. In Acinetobacter baylyi, EASy was demonstrated on an important bioenergy problem, the catabolism of lignin-derived aromatic compounds. The initial focus on guaiacol (2-methoxyphenol), a common lignin degradation product, led to the discovery of Amycolatopsis genes (gcoAB) encoding a cytochrome P450 enzyme that converts guaiacol to catechol. However, chromosomal integration of gcoAB in Pseudomonas putida or A. baylyi did not enable guaiacol to be used as the sole carbon source despite catechol being a growth substrate. In ∼1,000 generations, EASy yielded alleles that in single chromosomal copy confer growth on guaiacol. Different variants emerged, including fusions between GcoA and CatA (catechol 1,2-dioxygenase). This study illustrates the power of harnessing chromosomal gene amplification to accelerate the evolution of desirable traits.


Assuntos
Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Evolução Molecular , Dosagem de Genes , Genes Bacterianos , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/enzimologia
6.
Microbiology (Reading) ; 163(5): 789-803, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28537542

RESUMO

Transcriptional regulators in the LysR or GntR families are typically encoded in the genomic neighbourhood of bacterial genes for malonate degradation. While these arrangements have been evaluated using bioinformatics methods, experimental studies demonstrating co-transcription of predicted operons were lacking. Here, transcriptional regulation was characterized for a cluster of mdc genes that enable a soil bacterium, Acinetobacter baylyi ADP1, to use malonate as a carbon source. Despite previous assumptions that the mdc-gene set forms one operon, our studies revealed distinct promoters in two different regions of a nine-gene cluster. Furthermore, a single promoter is insufficient to account for transcription of mdcR, a regulatory gene that is convergent to other mdc genes. MdcR, a LysR-type transcriptional regulator, was shown to bind specifically to a site where it can activate mdc-gene transcription. Although mdcR deletion prevented growth on malonate, a 1 nt substitution in the promoter of mdcA enabled MdcR-independent growth on this carbon source. Regulation was characterized by methods including transcriptional fusions, quantitative reverse transcription PCR, reverse transcription PCR, 5'-rapid amplification of cDNA ends and gel shift assays. Moreover, a new technique was developed for transcriptional characterization of low-copy mRNA by increasing the DNA copy number of specific chromosomal regions. MdcR was shown to respond to malonate, in the absence of its catabolism. These studies contribute to ongoing characterization of the structure and function of a set of 44 LysR-type transcriptional regulators in A. baylyi ADP1.

7.
J Bacteriol ; 195(22): 5051-63, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23995643

RESUMO

Bioluminescence in Vibrio fischeri ES114 is activated by autoinducer pheromones, and this regulation serves as a model for bacterial cell-cell signaling. As in other bacteria, pheromone concentration increases with cell density; however, pheromone synthesis and perception are also modulated in response to environmental stimuli. Previous studies suggested that expression of the pheromone-dependent bioluminescence activator LuxR is regulated in response to glucose by cyclic AMP (cAMP) receptor protein (CRP) (P. V. Dunlap and E. P. Greenberg, J. Bacteriol. 164:45-50, 1985; P. V. Dunlap and E. P. Greenberg, J. Bacteriol. 170:4040-4046, 1988; P. V. Dunlap, J. Bacteriol. 171:1199-1202, 1989; and W. F. Friedrich and E. P. Greenberg, Arch. Microbiol. 134:87-91, 1983). Consistent with this model, we found that bioluminescence in V. fischeri ES114 is modulated by glucose and stimulated by cAMP. In addition, a Δcrp mutant was ∼100-fold dimmer than ES114 and did not increase luminescence in response to added cAMP, even though cells lacking crp were still metabolically capable of producing luminescence. We further discovered that CRP regulates not only luxR but also the alternative pheromone synthase gene ainS. We found that His-tagged V. fischeri CRP could bind sequences upstream of both luxR and ainS, supporting bioinformatic predictions of direct regulation at both promoters. Luminescence increased in response to cAMP if either the ainS or luxR system was under native regulation, suggesting cAMP-CRP significantly increases luminescence through both systems. Finally, using transcriptional reporters in transgenic Escherichia coli, we elucidated two additional regulatory connections. First, LuxR-independent basal transcription of the luxI promoter was enhanced by CRP. Second, the effect of CRP on the ainS promoter depended on whether the V. fischeri regulatory gene litR was also introduced. These results suggest an integral role for CRP in pheromone signaling that goes beyond sensing cell density.


Assuntos
Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Regulação Bacteriana da Expressão Gênica , Luminescência , Feromônios/metabolismo , Receptores de AMP Cíclico/metabolismo , Animais , Proteínas de Bactérias/metabolismo , AMP Cíclico/metabolismo , DNA Bacteriano/metabolismo , Deleção de Genes , Glucose/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Receptores de AMP Cíclico/genética , Proteínas Repressoras/metabolismo , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...